

Approximation of the Vapor Pressure of Water

January 06, 2011
PreFEED Corporation
Hiromasa Taguchi

Solutions for R&D to Design

Introduction

- Water is an indispensable substance for life forms and also in industrial plants. It is used in various applications such as in solvents, cooling mediums, and heating mediums.
- Since water is an important and familiar substance, it is widely used as a standard for physical units, and knowing these values is also important for judging the validity of various calculation results.
- The vapor pressure of water is an extremely important physical property, but it is difficult to memorize approximate values because of its strong nonlinearity.
- In this section, we will introduce an approximate method for calculating the vapor pressure of water, which can be easily memorized and readily applied.

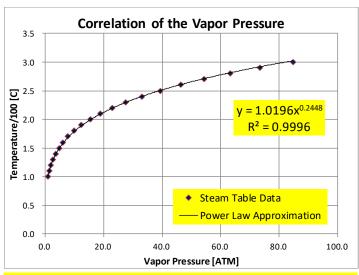
Antoine Equation

- In general, the vapor pressure is expressed by the Antoine equation or the Wagner equation, and parameters are given as physical property constants for each substance.
- The accuracy of these equations is high, but it is difficult to precisely memorize their parameters.

Kagaku Kogaku Binran (*in Japanese*: Chemical Engineering Handbook)
Revised 3rd ed., 5th ed., 6th ed.

 $3^{\text{rd}} \text{ ed.} : \log_{10} P[mmHg] = A - \frac{B}{C + t[^{\circ}C]}$ $5^{\text{th}} \text{ ed.} : \log_{10} P[kPa] = A_5 - \frac{B_5}{C_5 + t[^{\circ}C]}$ $6^{\text{th}} \text{ ed.} : \ln P[Pa] = A_6 - \frac{B_6}{C_6 + T[K]}$

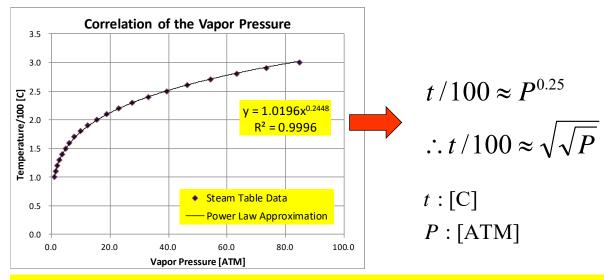
Antoine Constants of Water


	Kagaku Kogaku Binran	Α	В	С
	3 rd ed.	7.8097	1572.53	219
	5 th ed.	7.07406	1657.46	227.02
Solutio	6 th ed.	23.1964	3816.44	-46.13

Correlation of the Vapor Pressure

• We attempted to obtain to a simple regression based on measured data. The steam table (Japan Society of Mechanical Engineers, 1968) was used as data for comparison.

	Measured Measured Measured		Measured	Measured
		Data		
T []()	Data		Data	Data
T [K]	t [C]	P [Kg/cm2]	P [ATM]	t/100 [C]
373.15	100	1.03323	1.00000	1.0
383.15	110	1.46090	1.41392	1.1
393.15	120	2.02460	1.95949	1.2
403.15	130	2.75460	2.66602	1.3
413.15	140	3.68500	3.56650	1.4
423.15	150	4.85380	4.69771	1.5
433.15	160	6.30250	6.09982	1.6
443.15	170	8.07640	7.81668	1.7
453.15	180	10.22400	9.89521	1.8
463.15	190	12.79900	12.38740	1.9
473.15	200	15.85500	15.34513	2.0
483.15	210	19.45400	18.82839	2.1
493.15	220	23.65600	22.89526	2.2
503.15	230	28.52500	27.60768	2.3
513.15	240	34.13800	33.04017	2.4
523.15	250	40.56000	39.25565	2.5
533.15	260	47.86900	46.32961	2.6
543.15	270	56.14400	54.33849	2.7
553.15	280	65.46800	63.36265	2.8
563.15	290	75.92900	73.48724	2.9
573.15	300	87.62100	84.80324	3.0


A highly accurate correlation can be obtained by plotting the temperature/100 [C] versus the vapor pressure [ATM] and using the power law approximation.

3

Correlation of the Vapor Pressure

• Based on the form of the equation, it seems that it can be replaced by a simple correlation formula. The parameters can be rounded to perform a rough calculation.

This indicates that an approximate value of the saturated temperature can be obtained by taking the square root of the square root of the saturated vapor pressure in [ATM], and then multiplying the result by 100.

Solutions for R&D to Design


Verification of Approximate Correlation Equation

Measured	Measured	Antoine Ea	Approximation	
Data	Data	Antonie Eq.	Approximation	
P [ATM]	t/100 [C]	tA/100 [C]	tcal/100 [C]	
1.00	1.00	1.00	1.00	
1.41	1.10	1.10	1.09	
1.96	1.20	1.20	1.18	
2.67	1.30	1.30	1.28	
3.57	1.40	1.40	1.37	
4.70	1.50	1.50	1.47	
6.10	1.60	1.60	1.57	
7.82	1.70	1.70	1.67	
9.90	1.80	1.80	1.77	
12.39	1.90	1.90	1.88	
15.35	2.00	2.00	1.98	
18.83	2.10	2.10	2.08	
22.90	2.20	2.20	2.19	
27.61	2.30	2.30	2.29	
33.04	2.40	2.40	2.40	
39.26	2.50	2.50	2.50	
46.33	2.60	2.60	2.61	
54.34	2.70	2.70	2.72	
63.36	2.80	2.80	2.82	
73.49	2.90	2.91	2.93	
84.80	3.00	3.01	3.03	
207.79	3.70	3.76	3.80	

Vapor Pressure of Water Correlation Equation

$$t/100 \approx \sqrt{\sqrt{P}}$$
 $t:[C]$ $P:[ATM]$

5

Below 300C [85 ATM], it can be seen that the deviation is around \pm 1%. Even in near the critical point, the deviation is 3% or less, which is not that much different than the Antoine equation.

Solutions for R&D to Design 6

Conclusion

• When you want to estimate the saturated temperature of water from its saturated vapor pressure, simply remember to input the pressure in ATM units and press the root button twice on your calculator (deviation \pm 1%).

Vapor Pressure of Water Correlation Equation

$$t/100 \approx \sqrt{\sqrt{P}}$$
 $t : [C]$
 $P : [ATM]$

- It is possible to calculate with relatively high accuracy up to near the critical point (370 C), but for precise calculations, the Antoine equation or other methods should be used.
- This formula does not apply for substances other than water.

Solutions for R&D to Design